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Received 27 February 1995. in final form 24 April 1995 

Abshact We obtain the electronic structure of a simple model for zeolites which have been 
intercalated with metals, from which we can acmunt for aspects of their electrical and optical 
properties. The results are reviewed in the context of a search for a dense bundle of quasi-one- 
dimensional wires. 

1. Introduction 

Much new physics has been discovered in reduced-dimensionality electronic systems 
over the last three decades, and some of this physics has been applied in electronic 
and optoelectronic devices [l]. The quasi two-dimensional (QZD) electron gas at a 
semiconductor interface has been exploited in silicon MOSFETs and in high-electron 
mobility transistors. Quantum confinement of electrons and holes in thin layers has been 
exploited in laser structures. There have been many investigations of ballistic canier 
phenomena in quasi-one-dimensional (QID) structures and few carrier effects in quasi- 
zero-dimensional (QOD) smctures. These remain to be exploited practically. One intrinsic 
problem, among many, in having Q1D or QOD structures perform useful functions [Z] is 
the statistical fluctuation associated both with the size of the small structures per se and 
with the small numbers of caniers involved in each structure. 

The next move is towards three-dimensional structures that are made up of arrays of 
reduced dimensionality subunits. For a simple example of what is sought, see the appendix. 
The problem of few caniers will be eliminated by averaging over the large number of 
subunits, while individual carriers exploit the advantages of low dimensionality, such as a 
reduced phase space for scattering, or a narrower energy spread in the density of states. The 
rich variety of zeolite (alumin-silicate) minerals lend themselves to this programme [31. 
These materials consist of a strongly-bonded and insulating silicate lattice which supports 
voids or columns of nanometre lateral dimensions, the latter extending through the entire 
crystal in one or more spatial dimensions (see figure 1 for a schematic diagram). When 
used for ion exchange as in water softening, the columns take up and transport water and 
ions. In the interests of forming a dense bundle of one-dimensional wires, it is proposed to 
take a uniaxial columnar structure and fill the columns with metallic elements. 

By subjecting the minerals to high pressures and temperatures in the presence of low- 
melting point metals, it has been possible to force the metal into zeolite columns. So far 
TI, Pb. Bi and most recently K have been used [4,5]. The detailed stoichiometry of the 
former composite materials is not known, and so the integrity of the QID metallic wires is 
uncertain. In particular, if metal is absent from one or two unit cells of a given column we 
have an open circuit and no conduction in that column. One would need to rely on some 
communication between columns. Very anisotropic optical absorption throughout the visible 
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F i y r e  1. The unit cell of a typical zeolite m c l u r e ,  showing the rigid silicate cage, and the 
voids that u n  mnned between adjacent unit cells to form columns. There are many variants 
on this suuclure thal allow for columns in one or more spatial direction. 

spectrum has been obtained consistent with the QID character of the wires [4]. Electron 
spin resonance of the potassium-intercalated zeolite shows that there is approximately one 
potassium-atom silicate per unit cell, and each atom provides one free electron: the white 
zeolite turns blue after intercalation, and there is indirect evidence of some anisotropy [SI. 
The density of intercalated atoms can be increased more than ten-fold over this value (P P 
Edwards and P Anderson, private communication). For completeness, we note that chains of 
selenium atoms have been intercalated into zeolites and their optical properties investigated 
[61. 

In this paper we set up a simple model for the electronic structure of a dense bundle 
of Q1D wires appropriate to metal-intercalated zeolites. We calculate the density of states, 
conductivity and optical absorption within this model to establish the degree of anisotropy 
that might be anticipated. This turns out to be relatively modest but tailorable. We compare 
with the data available, We suggest further experiments and refinements to the theory. This 
exercise parallels an earlier one, where comparable properties were obtained for a certain 
type of tuneable Q2D electron gas 171, and subsequently verified [SI. 

2. The tight-binding-free-electron model electronic structure 

2.1. Densify of states 

The simplest model is to consider our intercalated zeolite as a set of parallel conducting 
cylinders of radius a at a centre-to-centre distance, d. The two-dimensional crystal 
represented by a plane cross-section of the zeolite normal to the cylinder axis is a simple 
square lattice. This is a fair approximation (with a - 0.34 nm and d - 2.0 nm) to the 
case of the natural zeolite mordenite M, intercalated with Pb, TI and Bi. In practice, we 
allow for a weak interaction between adjacent cylinders, so that the electronic structure is 
free-electron like in the direction of the cylinders, and tight-binding in the perpendicular 
direction. (In the next section, we include the fact that the cylinders are not straight-sided, 
but rather have a concertina-like cross-section, and we model this by the addition of a 
periodic potential (assumed weak) along the axis of the wire. This is important for the 
optical response.) 

The energy band structure is modelled by (h =Planck's consIant/2rr) 
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where the relative energy scales parallel and perpendicular to the wires are set by m*, 
the effective mass of motion along the wire, and the tight-binding parameter, h > 0, is 
the measure of the interaction energy between electrons in one wire and the one-eleclron 
potential in an adjacent wire. (We shall discuss the most appropriate values of these 
quantities below.) This simple model allows the density of states and conductivity to be 
obtained semi-analytically, i.e. the expressions are reduced to a single integral over analytic 
functions. The minimum energy is -4h (when k = 0), and in figure 2, one quadrant of 
the k, = 0 section of the Brillouin zone is shown. Constant energy contours are shown 
with Fermi line in the lower left triangle for -4h < E < 0, and in the upper right for 
0 < E c 4h. The density of states per unit volume becomes an integral over the Brillouin 
zone, in this case IkJl < x, Ik,dl < K, and over all k, 

N ( E )  = dk/G(E - E(k))(4a3). (2) s 
If we define 

CJ = E+Zh(cosk,d+cosk,d) 
then 

N(E)  = (1/4a3) dk, 1 dk, dk, G(CJ - 7i2k:/2m') 

and with @ = k,d and 0 = k,d. we proceed to evaluate the density of states as four times 
the integral over the first (@, 0) quadrant 

N ( E )  = (1pzx3)  lr d@ lr d8 J(2m*/hZ)J(E + 2h(cos@ +cos8)) 

provided [E + 2h(cos@ +cos8)] > 0. For a given E such that -4h < E < 0, and for a 
given @, there exists a 0' such that [E + 2h(cos+ + cos8*)] = 0, and for each E there is 
a qY such that when 0 = 0 we have [ E  + Zh(cosqY + I)] = 0. These quantities are shown 
in figure 2. In the case where 0 < E < 4h, the corresponding terms are qY and 8'. In each 
case, the 0 integration can be performed analytically, leaving only the @ integration to be 
performed numerically. Using the definitions a(@) = E + 2h cos @ and B = Zh, the results 
are given in terms of integrals over the complete elliptic integrals of the first kind [9-121 
F(n/2 ,  m) 

(i) -4h < E < 0 
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&-4h e 
Figure 2. The energy contours in the 6 = k,d and 0 = k,d plane as used in calculating the 
dens@ of states and conductivity. The significance of the 0' and $* quantities are described in 
the text. 

(iii) E z 4h 

n 

= ( W 2 n 3 ) J ( 2 m * / f i 2 )  1 d 6  ( 2 / J @  f B)F(n /2 ,  J(2B/(a + B ) ) ) .  

In figre 3, we show the density of states in energy. Note the three dimensional 
character at low energy giving over to a quasi-onedimensional ( l / J E )  form at higher 
energies (> 4h). The width of the peak is set solely by the two-dimensional tight-binding 
character, while the magnitude of the density of states also scales as Jm*. The,position of 
the Fermi energy (Er )  is determined by the number of electrons per unit volume, and its 
position also depends on the size of the tight-binding parameter h. In the K-intercalated 
material [5 ]  there is one electron per formula unit of zeolite (i.e. in a volume d3) .  The 
position of Er is marked in figure 3 for three cases, all having m* = me as is expected 
for Q1D alkali metals. The difference between h = 3 meV (i.e. a very nmow band) 
and h = 100 meV is in the relative energy dispersions in the directions perpendicular and 
parallel to the axis of the wires. The former has a 1D-like character for the density of states 
at Er, the latter a 3D-like character. 

2.2. Estimated values of band structure parameters 

The most appropriate value for h is subject to some approximation. Using Jo/Ko Bessel 
functions as the radial solutions Rlr)  for the lowest energy wavefunctions insiddoutside 
the cylinders of radius a ,  the expression for h (with r = ( T I .  and d a vector of length d )  is 
the one-electron potential V ( r ) ,  weighted by the overlap of the wavefunctions in adjacent 
wells 

h = R(IT - d l )R(r )V(r ) r  dr de. (3) s 
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0.40 
Tight-binding - Free-electron Model 

0.00 - 
-5.0 0.0 5.0 10.0 

Energy in units of h 
Figure 3. The density of states in energy (expressed in units of the parameter h)  for the simple 
freeelectron tight-binding band sbllchlre. 

We approximate the one-electron potential as an array of finitedepth cylindrical wells of 
constant depth -VO, with a constant interstitial potential -VI. We obtain Vo as the bottom 
of the conduction band in bulk potassium (work function + bulk Fermi energy = 4.34 eV), 
and we calculate the zero of energy in equation (1) from the first bound state of electrons 
in a cylinder of radius a (EO - 1.75 eV above -VO for a = 0.35 MI, if the well were 
infinitely deep, but only a third of this value if the well is only twice as deep as this first 
bound state). The value of the interstitial potential is estimated from a calculation of the 
overlap integral in the regime where (VI - VO) - 2Eo which gives h - 0.1 VI. The relevant 
value of VI is consistent with energies near the top of silica valence bands. If the potential 
well is much deeper, the value of h decreases rapidly. It is therefore likely in practice that 
h - 0.05-0.25 eV, i.e. a regime where there is likely to be significant 3D dispersion. 

2.3. Conductiviry 

The corresponding expression for the Conductivity in the relaxation time approximation is, 
as a function of the Fermi energy, 

dk (1 / h 2 )  d2E (k)/dkj d k j  J uij = (e2r/2n2) 
occupied ban& 

from the form of the energy bands, the conductivity is diagonal, and uxr = U,,. Here, 
r is a phenomenological relaxation time: we return to the anisotropy of r below. For 
convenience, we define a tight-binding mass l / m t  = 2hd2/h2. The same manipulations as 
above for the density of states give rise to an expression 

u = (4e2r/(nZdZ))J(2m*/h2)  
0 Jo/m* 

where the J integrals are defined as 



and 

with 

and 

The results for the conductivity are shown in figure 4. It was confirmed numerically 
that J I  = Jlo in each regime. Given that m* - me for alkali metals providing one electron 
per atom to the wire, one would need a small mt (or large h )  for the conductivity to 
be approximately isotropic. In the case of Pb or Bi contributing 4 or 5 electrons, the 
conductivity will be more anisotropic than in the case where only one electron is contributed. 
In the regime where h - 0.05-0.25 eV, we see a relatively isotropic conductivity. Zeolites 
with a less dense set of columns for intercalating will have a more anisotropic conductivity. 
In this latter case, the tight-binding energy bands are very narrow, and a detailed microscopic 
calculation of the scattering processes may allow for an extra degree of anisotropy in 5 and 
hence the conductivity, according to whether the scattering involves changes in the k-vector 
in the z or x, y directions. 
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-5.0 0.0 5.0 10.0 
Fermi Energy in units of h 

Figwe 4. The huo independent values of the coudwivity as a function of the Fermi energy, 
(expressed in units of the parameter h)  for the simple freeelectron tight-binding band shllchue 

3. The tight-binding-nearly-free-eleetron model electronic structure 

3.1. Densiry of states 
A one band approximation as introduced in the last section cannot be used to describe 
the optical properties. Higher subbands based on the excited states of the cylinder and 
free-electron motion along the column will be too simple to account for optical properties, 
as in this case there is no absorption when light is polarized parallel to the column. We 
can remedy this with a nearly-free-electron model along the axis of the column. Such an 
extension to the model also allows us to account in an approximate way for the fact that the 
columns do not have a uniform cross section along their length - rather they widen out 
in the centre of the unit cell shown in figure 1 and narrow at the edges of the cell where 
the silicate cages link up. We assume a single weak periodic component to the potential 
seen by electrons in the direction of the column and we replace the z-component of the 
free-electron band stmcture h2k:/2m' with the more complex nearly-freeelectron (NFE) 
expression 1131, 

E,(k,) = (h2kZ/2m*+h2(k, - K)2/2na*)/2fJ(((h2k:/2m* -h2(ki - K)'/Zm*)/2)'+ V 2 )  

(4) 
where V and K = 2n/d are the amplitude and wavenumber of the periodic potential. For 
reference below, the reduced units used below for these quantities are ,y = V/(fiz/2m*d2) 
and q = h/(h2/2m*d2). The value of K is set by the crystal structure, but the amplitude V 
is another parameter (like h above), and is estimated below. There are two bands because 
of the f factor, and optical absorption can now occur between these bands when light is 
polarized along the metal wire. The band structure is shown schematically in figure 5. 

An alternative expression for the density of states, capable of handling the more complex 
E(k,),  is obtained by performing the integrals in k, and k, in equation (1) and leaving the 
k, integral to be done numerically. The relevant expression is (with 5 = k,d) 

N ( E )  = ( l / a3d3h)  d< F ( ~ r / 2 .  J(1 - A2(p)/16h2)) J," 
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I E Nearly-free in kZ 

I 
Tight-binding in ky 
Figure 5. The schematic band structure in the tight-binding-nearly-free-electron model 

with 

A(<) = E-(?i2/2m*d2)((C2+(C - 2 n ) ' ) / 2 ~ ~ ( J ( ( C 2 - ( < - ~ ) 2 ) / 4 + ~ 2 ) )  

where x = V/(E2/2m*dz),  and the integrand is zero if ]A1 > 4h. In the limit of x = 0, 
the results coincide with those obtained in the previous section. 

3.2. Results and estimates of band structure parameter values 

In figure 6(a), the density of states is shown for the cases where 7 = h/(h2/2m*d2) = 1 
(i.e. narrow bands in the k , 4 ,  plane) and where x = 0 (i.e. no periodic potential, but a 
finite unit cell extent in the k, direction), and x = 10 (a sizable periodic potential). The 
important point here is that there is an upper limit to the energy of the lowest band when 
k, = x /a .  This is shown explicitly in the case where x = IO. An estimate of the value of 
V can be obtained by equating to 2V the difference in ground-state energy of electrons in 
wide and narrow cylinders, whose radii correspond to the different parts of the unit cell. For 
the case of a = 0.35 nm above as the narrowest radius, and with a = 0.5 nm as the widest 
value, then V = 0.15 eV, and x - 15. In practice when d = 2 nm, h2/2m*d2 = 9.2 meV, 
so for moderately wide bands, 1 - 10, and the density of states for this case is plotted 
in figure 6(b). Now the density of states is essentially two-dimensional tight-binding-like, 
the amount of dispersion in the k, direction being very small out to the first Brillouin zone 
boundary. This aspect of the NFE band structure greatly reduces the anisotropy of the 
system compared with that in the previous section. If 1 z rr2/4, there is more energy 
dispersion in the k,-k, plane than in the kz direction in the lowest subband in the limit 
x = 0, and for x > 0, this range in 7 for this to occur is even wider. 

3.3. Conductivity 

The expression for the conductivity of the nearly-freeelectron tight-binding approximation 
to the band structure is obtained numerically, as only one of the three integrals can be 
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TB-NF Model 0.8 
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Figure 6. The density of states in energy (expressed in units of the parameter h)  for the 
nearly-free-electron tight-binding band structure for two values of the amplitude of the periodic 
potential V, and WO values of the relative dispersion in the directions parallel and perpendicular 
to the columns. 

performed analytically. The results, for the cases x = V/(h2/2m*dz) = 0 and ,y = 10 and 
for 7 = h/(h2/2m*d2) = 1 and 7 = 10 are shown in figures 7(a) and 7(b). In all cases the 
conductivity is rather less anisotropic than in figure 4, reaching a maximum value of - 2, 
once there is about one electron per unit cell. The anisotropy always favours transport in 
the z-direction. 

In these diagrams, we can use the Fermi energy as a variable that correlates with 
the relative density of intercalated species, on the assumption that each intercalated atom 
gives up a fixed number of electrons irrespective of the density of the intercalate. If this 
intercalation density exceeds two atoms per silicate formula unit, the lowest of the subbands 
is filled. (Note in the case where the density is just less than two per formula unit is may 
be possible to obtain the analogue of hole transport in semiconductors, with the changing 
sign of the effective masses.) We have repeated the calculations of the density of states and 
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Figure 7. The two independent values of the conductivity as a function of the Fermi energy, 
(expressed in units of the parameter k) for the nearly-free-electron tight-binding band smctwt 
for two values of the amplitude of the periodic potential V .  and two values of the relative 
dispeaion in the directions paallel and perpendicular to the columns. 

conductivity for the second subband (the + sign in equation (4) above), for the same values 
of the parameters used in figures 6 and 7. This second band is much wider in energy for 
r~ = I ,  but not appreciably so when r~ = IO. Again the conductivity i s  not very anisotropic 
under any circumstances. 

3.4. Optical properties 

Once we have two bands and a Fermi energy that lies in the range of the lower band, we can 
calculate the optical absorption, as a function of the photon energy fiw. In practice we have 
to calculate the detailed matrix element between initial and final state wavefunctions, but 
here we make an initial approximation that this matrix element is constant. In this restricted 
regime, the optical absorption is proportional to the optical density of states, J(fiw), i.e. the 
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number of pairs of states separated in energy by the photon energy and weighted by the 
condition that the initial state is occupied and the final state empty, 

In the relatively simple case where the Fermi energy is in a gap between a filled lower 
band and an empty upper band (as when V is strong enough to open an absolute band gap 
and there are two electrons per unit cell), the above expression simplifies (when the tight 
binding parameter is the same in both bands) to 

[ 1 / ( 1 r ~ a ~ ) 1 h m / , / ( ( h ~ ) ~  - 4V2) for 21VI < Am < - h2KZ/2m' 
I O  otherwise 

J (ho)  = 

which is broad and featureless within the range of energies for which it is non-zero. We have 
calculated J(hu) ,  assuming that the upper tight binding band is described by a modified 
interaction parameter h', for a range of positions of the Fermi energy in the lower band, 
and the same sets of parameters as above (x = 0, 10, q = 1, IO). Typical results are shown 
in figure 8. Again the lack of features in the computed results makes experimental results 
difficult to interpret using this approach, as the width of any optical absorption feature is a 
complex interaction of tight-binding parameters h and h', the amplitude and wavelength (x 
and q )  of the periodic potential. 

The full expression [ 141 for the optical conductivity tensor U involves the optical mahix 
element between initial and final states @i(k), Qf(k) 

as a factor within the integral expression in equation (5), with E the polarization vector 
of the light. The matrix element distinguishes the nature of the wavefunction along 
the axis of the columns which determines uzz and radially within each column which 
determines uxz. Any anisotropy in the diagonal optical conductivity can then be used 
to extract V for the U= component and a convolution of tight-binding parameters from the 
U,, = uyyy components. Such an exercise is better undertaken in the detailed interpretation 
of specific experimental results. 

4. Discussion 

The modest anisotropy of electrical and optical properties obtained within the simple models 
of the electronic structure of ion-intercalated zeolites suggests that the interactions between 
wires are too great. Only if the tight-binding bands are only a few millivolts wide is 
there appreciable anisotropy. Zeolites would need to have 2 3 nm separation between 
adjacent columns rather than the - 2 nm used so far. This would make it easier to ensure 
that the tight-binding bands are either full or empty while having a part filled band in 
the k, direction, thus limiting the conductivity transverse to the wires, and enhancing the 
anisotropy of both the electrical and optical conductivity. This is the regime of 7 large. The 
simple one-electron theory tends to break down with very narrow bands, with modifications 
to the transport properties caused by electron-electron correlations. A dense bundle of 
one-dimensional wires then becomes even more difficult to realise. 
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Figure S. joint density of states &$ a function of photon energy, assuming a constant mauix 
element for the optical absorptinn in the model bmd Svucture. calculated for specific sets of 
band structure parameters. Note that h (h') are the tighl-binding parameters for the first (second) 
bands. 

The range of results shows the extent to which the density of intercalated metals can 
be used to alter the electronic and optical properties of the zeolites. The simple model here 
assumes a constant and uniform electron density from the intercalated atoms as a variable. In 
practice this can be difficult to achieve, since a given unit cell will have discrete number of 
intercalate atoms, and averaging will need to be done over relatively large volumes. A very 
high integrity is assumed of the metal wires once formed, and this may be difficult to achieve 
in practice. If, however, initial optical and transport measurements give promising results 
in terms of anisokopy, a more elaborate theory of electronic structure may be appropriate. 
Such a theory would also have to address further issues such as Peierls distortions and 
related instabilities in Q1D systems embedded in a 3D matrix. 

Appendix. A dense bundle of Q1D wires 

The resistance of a piece of copper of 3 pm square cross section and 10 pm length at 71 K 
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is 0.017 Q. Below 77 K, the resistance of ultra-pure copper drops by several orders of 
magnitude, while by room temperature the resistance rises to - 0.14 Q. Consider a set of 
lo3 x lo3 Q1D wires centred 3 nm apart on a square lattice in a plane perpendicular to the 
wire axes, and each wire having one ballistic electron channel 1151. The resistance of each 
channel at low temperature is h/(2ez),  and the overall resistance of the array is 0.012 Q. 
The temperature dependence of this resistance is not weU characterized, but is small at low 
temperature [16], and the ballistic electron effects have been seen up to nearly 200 K 1171 in 
suitable systems, again with a modest temperature dependence. It is argued that a suitable 
bundle of Q1D wires, such as metal-intercalated zeolites, might share this property to even 
higher temperatures. A combination of low resistance and low temperature variation of the 
resistance is attractive in device design. 
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